Cayley-Hamilton

Recall that the Cayley-Hamilton Theorem in linear algebra says that an $n \times n$ matrix $A$ satisfies its own characteristic equation. The characteristic polynomial for $A$ is $p_{A}(x)=\operatorname{det}\left(x \mathbb{1}_{n}-A\right)$. That is, $C-H$ says $\underset{\substack{n \times n \\ \text { matrix }}}{\uparrow}$
That $\quad P_{A}(A)=0$.

We will prove a version of this for f.g. modules that has useful/surprising applications.

Theorem: (Cayley-Hamilton) Let $R$ be a ring, I an ideal, and $M$ an $R$-module generated by $n$ elements. Let $\varphi: M \rightarrow M$ be a homomorphism. If $\varphi(M) \subseteq I M$, then there is a monic polynomial (ice. leading coefficient 1)

$$
p(x)=x^{n}+p_{1} x^{n-1}+\ldots+p_{n}
$$

with $p_{j} \in I^{j}$ for each $j$ such that $p(\varphi)=0$ as a homomorphism. ie. $p(\varphi)(M)=0$.

Pf: let $m_{1}, \ldots, m_{n}$ be generators for $M$. Then we com write $\varphi\left(m_{i}\right)=\sum a_{i j} m_{j}$ such that each $a_{i j} \in I$.

We com treat $M$ as an $R[x]$-module by setting $x a=\varphi(a)$ for $a \in M$. ie. $x$ acts as $\varphi$.

Let $A=\left(a_{i j}\right)$ and $\vec{m}=\left(\begin{array}{c}m_{1} \\ \vdots \\ m_{n}\end{array}\right)$.
Then we can rewrite the above equation as

$$
(x \mathbb{I}) \stackrel{\rightharpoonup}{m}=A \vec{m} \Rightarrow(x \mathbb{I}-A) \vec{m}=0 .
$$

Recall from linear algebra that if adj $A$ is the adjugate matrix of $A$, Then $(\operatorname{adj} A) A=(\operatorname{det} A)$ II.
On the HW, well see this holds for arbitrary rings!

Let $B$ be the adjugate of $x I I-A$. Then

$$
B(x \mathbb{I}-A)=\operatorname{det}(x \mathbb{I}-A) \mathbb{I} .
$$

Multiplying both sides by $\vec{m}$, we get

$$
\operatorname{det}(x \mathbb{I}-A) \mathbb{I} \vec{m}=0 .
$$

i.e. $\operatorname{det}(x \mathbb{I}-A) m_{i}=0 \quad \forall i$. Thus, $\operatorname{det}(x \mathbb{I}-A)$ annihilates $M$, so if $p(x)=\operatorname{det}(x \mathbb{I}-A)$, then $p(\varphi)$ is the zee map.

Since $a_{i j} \in I$, the coefficients are in the correct powers of $I$.

Cayley-Hamilton shows us that free modules behave a lot like vector spaces. We first give another definition for free modules.

Def: Let $R$ be a ring, $F$ an $R$ module. $F$ is free $w /$ free basis $B \subseteq F$ if every element of $F$ is uniquely an $R$-linear combination of elements of $B$. Equivalently, if $b_{1}, \ldots, b_{n} \in B$ are distinct, then $\sum a_{i} b_{i}=0 \Rightarrow a \| a_{i}=0$.
(Of course if $R$ is a field, this is the same as a vector space basis.)

As mentioned at the beginning of the semester, freeness is equivalent to $F \cong \bigoplus_{b \in \beta} R b$. In the f.g. case, this is isomorphic to $R^{n}$, and $(1,0,0, \ldots)$, $(0,1,0, \ldots), \ldots$ gives a free basis.

C-H has some surprising corollaries for modules:

Cor: $R$ a ring, $M$ a finitely generated $R$-module.
a.) If $\alpha: M \rightarrow M$ is a surjective homomorphism, it's an isomorphism.
b.) If $M \cong R^{n}$, then any set of $n$ elements that generate $M$ is a free basis. In particular, the rank, $n$, of $M$ is well-defined.

Pf: a.) We can give $M$ the structure of an $R[t]$-module where $t m:=\alpha(m)$.

Let $I=(t)$. Since $\alpha$ is surjective, we have $I M=M$. Thus, we can apply $C-H w / \quad \varphi=i d$.

So there is a polynomial $p(x)=x^{n}+p_{1} x^{n-1}+\cdots+p_{n}$ s.t. $p(i d) M=0$, and $p_{i} \in(t)^{i}$. i.e. $p_{i}=a_{i} t^{i}$ for $a_{i} \in R$. (if $a_{i} \in R[t]$, can redistribute higher powers of $t$ to other coeffs.)

Thus, $\left(1+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}\right) M=0$

$$
\begin{aligned}
& \Rightarrow(1+t(\underbrace{a_{1}+a_{2} t+\ldots+a_{n} t^{n-1}}_{q(t)})) M=0 \\
& \Rightarrow 1+q(t) t=0 \text {, ie. }(-q(\alpha)) \alpha=i d_{M}
\end{aligned}
$$

so $-q(\alpha)$ is an inverse for $\alpha$, so $\alpha$ is an isomorphism.
b.) Choose generators $m_{1}, \ldots, m_{n}$ for $M$. We can define a surjection

$$
\beta: R^{n} \rightarrow M
$$

which sends the $i$ th basis element to $m_{i}$.

Choose an isomorphism $\gamma: M \rightarrow \mathbb{R}^{n}$. Then $\beta \gamma: M \rightarrow M$ is a surjection, so it's an isomorphism. Thus, $(\beta \gamma) \gamma^{-1}=\beta$ is an isomorphism, so $m_{1}, \ldots, m_{n}$ must be linearly independent and thus form a basis.

To see that rank is well-defined, suppose $R^{m} \cong R^{n}$ and $m<n$. Let $a_{1}, \ldots, a_{m}$ be a free basis for $R^{m}$. If we add $n-m$ Os, we get $n$ generators that don't form a free basis. $D$

Remark: If $p \in R[x]$, we can think of $R[x] /(p)$ as adjoining a root of $p$ to $R$.
egg. $\quad R[x] /(a x-1) \cong R[1 / a]=R$ localized at $\left\{1, a, a^{2}, \ldots\right\}$
$C-H$ gives us a result dealing $w /$ the case when $p(x)$ is a monic polynomial:

Prop: let $R$ be a ring and $J \subseteq R[x]$ an ideal. Let $S=R[x] / J$ and $S=$ image of $x$ in $S$.
a.) $S$ is generated by $\leq n$ elements as an $R$-module iff it contains a monic polynomial of degree $\leq n$,
in which case it is generated by $1, s, \ldots, s^{n-1}$.
b.) $S$ is a f.g. free module rf $J$ is generated by a monic polynomial. In this case, $1, s, \ldots, s^{n-1}$ is a free basis.

Pf: a.) $1, s, s^{2}, \ldots$ certainly generate $S$. If $J$ contains a monic polynomial $p$ of $\operatorname{deg} n$, then

$$
S^{n}=a_{1} s^{n-1}+\text { lower deg terms, }
$$

So for $d>n$,

$$
S^{d}=a_{1} S^{d-1}+\text { lower deg terms, }
$$

so by induction $S$ is generated by $1, s, \ldots, s^{n-1}$.
Conversely, suppose $S$ is generated by $n$ elements. Let $\varphi: S \rightarrow S$ be defined $\varphi(a)=s a$.

Let $I=R$. Then $\varphi(S) \subseteq R S=S$, so $C-H$ says there is some $p(t)=t^{n}+p_{1}{ }^{n-1}+\cdots+p_{n}$ s.t. $p_{i} \in R$ and $p(\varphi)=0$ ie. $p(x) \in \operatorname{Ann} S=J$.
b.) Suppose $J=(p), p$ a monic polynomial of deg $n$. Then by a.), $1, s, \ldots, s^{n-1}$ generate $S$.

Suppose $a_{0}+a_{1} s+\ldots+a_{n-1} s^{n-1}=0$, some $a_{i} \in R$.

Then $a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \in J=(p)$, but $p$ is monic of deg $n$, so all $a_{i}=0 \Rightarrow 1, s, \delta^{2}, \ldots, s^{n-1}$ form a free basis.

Conversely, assume $S$ is a free module ot rank $n$. By a.), there is a monic polynomial of dey $n$ in $J_{s}$ so $S$ is generated by $1, \ldots, S^{n-1}$.

But $S$ is free of rank $n$, so this is a free basis for S. WTS: $J=(p)$.

If $f \in J$ and deg $f<n$, this gives a linear relation among $1, \ldots, s^{n-1}$, so $f=0$.

If $\operatorname{deg} f=d \geq n$, write $f=a_{d} x^{d}+$ lower deg terms. Then $f-a_{d} x^{d-n} p \in J$ has lower degree.

Repeating this, we get $f-q p \in J \quad w /$ degree $<h$ $\Rightarrow f-q p=0 \Rightarrow f \in(p)$. Thus $(p)=J$.

Nakayama's Lemma
As a corollory of $C-H$, we get Nakayama's Lemma, a surprisingly useful result about finitely generated modules. First we heed the following lemma:
lemma: If $M$ is a finitely generated $R$-module and $I \subseteq R$ an ideal such that $I M=M$, then there is some $r \in I$ that acts as the identity on $M$, ie. $(1-r) M=0$.

Pf: Let $\varphi=i d$ on $M$. By $\left(-H, \exists p_{1}, \ldots, p_{n}\right.$ s.t.

$$
p_{j} \in I^{j} \subseteq I \text { s.t. } \quad\left(1+p_{1}+\ldots+p_{n}\right) M=0
$$

Set $r=-\left(p_{1}+\ldots+p_{n}\right)$.D

Recall that the Jacobson radical of $R, J(R)$, is the intersection of the maximal ideals.

Nakayama's Lemma: Let $I \subseteq R$ be an ideal contained in $J(R)$, and let $M$ be a finitely generated $R$-module.
a.) If $I M=M$, then $M=0$.
b.) If $m_{1}, \ldots, m_{n} \in M$ have images in $M / I M$ that generate it as an $R$-module, then $m_{1}, \ldots, m_{n}$ generate $M$ as an $R$-module.

Pf: a.) The previous lemma says there is some $r \in I$ s.t. $(1-r) M=0$. $r$ is in every max'l ideal, so $1-r$ is in no maximal ideal, so $1-r$ is a unit, so $M=(1-r) M=0$.
b.) Let $N=M /\left(\Sigma R m_{i}\right)$.

Then $N / I N=M /\left(I M+\left(\Sigma R m_{i}\right)\right)=0$.
Thus, $N=I N$, so $N=0 \Rightarrow M=\sum R m_{i}$. $\square$

Note: We assumed $M$ is f.g., so we can't use b.) to prove a module is finitely generated.

Cor: If $M$ and $N$ are f.g. $R$-modules and $M \otimes_{R} N=O$, then Ann $M+\operatorname{Ann} N=R$. If $R$ is local, $M$ or $N$ is $O$.

Pf. First assume $R$ is local and $M \neq 0$. If $P \subseteq R$ is the maximal ideal, then $J(R)=P$, so Nakayama says $M \neq P M$. Thus $M / P M \neq O$. This is an $R / P$-vector space, so there's a surjection

$$
M / P M \rightarrow R / P
$$

Thus, $M \otimes_{R} N=0$ surjects onto $R / P \otimes_{R} N=N / P N$

$$
\Rightarrow N=P N \Rightarrow N=0 .
$$

If $R$ is not local, assume $I=\operatorname{Ann} M+\operatorname{Ann} N \neq R$. Then we can find a prime ideal $P$ containing $I$.

Then $M_{p} \otimes_{R_{p}} N_{p}=O$ (by assumption), so by the
local case $M_{p}$ or $N_{p}=0$. Assume WLOG that $M_{p}=0$. Then $P \notin \operatorname{Supp}(M)=V(\operatorname{Ann} M)$, so $\sin 6, M$
is fag.
Ann M $\not \subset P$, a contradiction.

